Background

The amount of energy produced by wind turbines is still on the rise and seems to continue to do so in the near future. In addition the rotor size of wind turbines increases, with current rotor diameters that may range up to 126m.

At the same time we see the development that helicopters operate more and more in non-regulated airspace with the advent of medical air services, police surveillance and fire fighting helicopters etc., where they may encounter the air wakes from wind turbines.

More and more wind farms consisting of a large number of wind turbines are spreading across the North Sea. Also the military with their dedicated low level flying exercises are more likely to come upon the wind turbine wakes at some moment in time. Ultimately the likelihood of air traffic encounters with wind turbine wakes is increasing, showing the need for a more detailed study on the interactions of rotorcraft and the wind turbine wake.

An extensive study of the wind turbine wake and its effect on helicopter flight with regard to stability, handling quality and safety has not yet been performed. The Action Group under the Garter Group of Responsibles Helicopters (GoR-HC) will aim to investigate the issue. This will be done by performing a survey on the wind turbine wake characteristics and using this data for the identification of relevant flow phenomena for the study of its effects on rotary flight.

Programme/Objectives

Objectives

Despite the amount of literature on both wind turbine wakes and helicopter – fixed wing tip vortex encounters, not much research has been done on the interactions of wind turbine wakes and helicopter flight.

The aim of the Action Group is to set up a team of researchers from universities and research institutes to cooperate and perform the following activities:

- Perform a survey of available experimental and analytical wake data for typical wind turbines. Collect and assemble the data to produce a database of wind turbine wake properties. Identify appropriate wake characteristics with regard to the effect it has on the helicopter flight characteristics.
- Define representative test cases for a wind turbine and helicopter combination. Several combinations of small/large helicopter and wind turbines, depending on available experimental data, available helicopter models, pilot-in-the-loop facilities etc. should be considered.
- Perform computations and piloted simulator experiments and analyse the effects of wind turbine wake on the stability, handling qualities and safety aspects of a helicopter.
- Validate the results of the computational tools and simulator trials with available experimental data.
- The group should provide recommendations for legislation and disseminate the findings to the appropriate authorities and parties concerned.

Programme

The programme consists of 5 work packages

0. Project Management and Dissemination
1. Wind turbine wake identification
2. Wind turbine wake experiments and computations
3. Helicopter - Wind turbine off-line simulations

The kick-off of the Action Group HC-AG23 took place 6 November 2014

Results

- A reference wind turbine (NREL5), a reference helicopter (BO105), and a set of test cases to be studied have been discussed and a selection has been made. The appropriate databases have been made available to the partners.
- An extensive overview of wind turbine wake characteristics, methods and tools has been produced. Analytical, computational and experimental data has been collected.
- First results of computed wind turbine wake velocity fields using a variety of CFD tools and with different methodologies.
- Preliminary computations of a helicopter - wind turbine encounter a) Interaction of helicopter and wind turbine wake and 2) the resulting track deviations when flying through a wind turbine wake.
- Preparations have been made for the implementation of a wind turbine wake and a helicopter in a full-scale simulator. The need to harmonise the helicopter model characteristics will be addressed.
- Study for the definition of objective criteria to assess handling qualities in a wind turbine wake has been conducted.

Members of the HC/AG-23 group are:

G. Barakos University of Glasgow
M. Pavel Technical University Delft
A. Visingardi CIRA
P. M. Basset ONERA
F. Campagnolo Technical University Munich
S. Voutsinas NTUA
P. Lehmann DLR
R. Bakker NLR
M. White University of Liverpool

GARTEUR Responsables:
J. Hakkaart NLR